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Abstract—Cloud computing offers many possibilities for 

prospective users; there are however many different storage and 

compute services to choose from between all the cloud providers 

and their multiple datacenters. In this paper we focus on the 

problem of selecting the best storage services according to the 

application's requirements and the user's priorities. In previous 

work we described a capability based matching process that 

filters out any service that does not meet the requirements 

specified by the user. In this paper we introduce a mathematical 

model that takes this output lists of compatible storage services 

and constructs an integer linear programming problem. This ILP 

problem takes into account storage and compute cost as well as 

performance characteristics like latency, bandwidth, and job 

turnaround time; a solution to the problem yields an optimal 

assignment of datasets to storage services and of application runs 

to compute services. We show that with modern ILP solvers a 

reasonably sized problem can be solved in one second; even with 

an order of magnitude increase in cloud providers, number of 

datacenters, or storage services the problem instances can be 

solved under a minute. We finish our paper with two use cases, 

BLAST and MODIS. For MODIS our recommended data 

allocation leverages both cloud and local resources; it incurs in 

half the cost of a pure cloud solution and the job turnaround time 

is 52% faster compared to a pure local solution. 

Keywords: data allocation; cloud computing; integer linear 

programming 

I.  INTRODUCTION 

To decide which cloud platform [1] is best for a new cloud 
application, typically a designer focuses on compute 
capabilities as the deciding factor. That is, after it is decided if 
it will be public-, private-, or hybrid-cloud, a high-level 
decision is made regarding PaaS vs. IaaS, and then a 
subsequent decision selects the particular platform within the 
class (e.g., IaaS and then Amazon EC2). Implicit in this process 
is a belief that the storage capabilities of each cloud are 
basically equivalent or at least not sufficiently distinguishable 
to warrant closer consideration as to the choice of cloud 
platform. 

However, we believe that data capabilities should be a first-
class consideration when selecting a cloud platform, at the 
same level of importance as computation. Arguably 
computation is more flexible: a Windows application can run 
on a native Windows OS (local Windows HPC cluster or 
Windows Azure) or within a virtual machine (local Eucalyptus 
cluster or Amazon EC2). Storage services, on the other hand, 
present many different options whose capabilities are 
sometimes exclusive to a cloud provider; choices range from 

traditional files (NFS) and SQL databases in local clusters to a 
variety of cloud services (for Amazon there are S3, EBS, 
SimpleDB, RDS and ElastiCache). 

In previous work [2] we presented the first phase of a 
system designed to help with the cloud storage service 
selection decision. First, we developed an XML schema that 
describes the capabilities (both functional and non-functional) 
of the storage services of Amazon, Windows Azure and local 
clusters. We can express different attributes like the encryption 
capability of S3, the performance of Windows Azure Tables 
for a read operation under multiple concurrent clients or the 
capacity of the local NFS file system. Second, we encoded 
different user requirements; each requirement will look at a 
certain storage service and decide whether there is a match 
(true/false decision). Custom user requirements can be added 
easily, some examples of the ones developed by us are: “data 
must be located within the United States”, “data must be triple 
replicated or with specified durability of >99.999%” or “data 
can be accessed concurrently”. The input for our prototype 
application is a description of the different datasets that the 
application uses, together with their storage requirements. The 
output is, for each dataset, a list of storage services that meet 
those requirements, along with cost and performance estimates. 

For example, an application may use three different 
datasets: several GBs of input satellite data, intermediate 
storage shared among different processes and several MBs of 
output files. Our prototype will give a list of possible storage 
services for dataset; for the satellite data it may be: Amazon S3 
in Virginia and California, Azure Blobs in South-central and 
North-central US, etc. Similar lists are presented for the other 
two datasets. The user would then choose an allocation from 

 

Figure 1. Overview of our system. In this paper we focus on the Data 
Management component. 
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these options: satellite input to S3, intermediate data to 
SimpleDB and output data to S3 RRS in Amazon Virginia. 

While we believe that this prototype is valuable, there are 
three important limitations: the list of storage options for each 
dataset is not ordered, that is, we do not present a preferred 
storage option; each dataset is analyzed in isolation so it is not 
obvious what the best global solution is; and the computational 
side (number of application runs, cost per hour, machine speed, 
etc.) is not taken into account. In this paper we seek to address 
these limitations so we can produce a global data allocation 
solution that balances cost and performance of both storage and 
computation. If the best storage service for a single dataset 
resides in a cloud that does not have good choices for the rest 
of the application data, then we may arrive to a sub-optimal 
allocation of data. As we will show, trying to find an optimal 
solution increases the complexity of the problem to NP hard. 
We provide a model for this data allocation problem and a 
software implementation that is both fast and scalable. 

Figure 1 shows a general overview of our system. On the 
right side we have the different datacenters with storage and 
compute services that cloud providers and others (local 
clusters) provide. On the left side we have the user that 
provides the data, the data requirements, and information about 
the execution of the application (number of runs, duration, 
datasets accessed). We have already mentioned our approach 
[2]  to describe the storage capabilities and data requirements 
in a machine readable format and perform a capability-based 
matching. The output of this first stage is taken as the input for 
this paper; our final goal is to produce the data allocation 
decisions. Thus, we complete the component Data 
Management in Figure 1; we leave the Scheduler and 
Distributed Data System components as future work. 

We will first present our problem model, whose solution 
represents the data allocation decision. Factors such as storage 
cost, compute cost, latency, and bandwidth are combined into 
an objective function that has to be minimized. The 
combination of this function and additional restrictions (linear 
constraints) forms an integer linear programming problem, 
which is NP hard. In order to solve this computationally hard 
problem we use a modern ILP solver (lp_solve [3]); we show 
that, for simple use cases, a couple hundred milliseconds are 
enough to solve the problem instance. For a more complex 
application with 3 datasets and where each dataset could be 
matched to 48 possible storage systems the solver takes 1 
second to solve the ILP problem. We show that even with an 
order of magnitude increase in the number of possible storage 
and compute services our approach is able to come up with an 
optimal data allocation within seconds. 

We present two use cases for our system: BLAST and 
MODIS. For BLAST we take our standard model and include 
one additional restriction: a monthly budget. Thus, the user 
may ask for the best data and compute allocation which fits her 
budget. Latency and bandwidth are not the only performance 
metrics that we have considered. For MODIS we add job 
turnaround time as another factor in our objective function. In 
this case we try to make the allocation decisions that will 
minimize job turnaround time the most, while still meeting the 
data requirements and the budget. 

In summary, the contributions of this paper are: 

• We introduce a formal model to represent the problem 
of allocating resources (storage and computation) to 
services offered by different cloud providers. 

• We extend the implementation of our data management 
system with an ILP solver to provide a timely optimal 
solution to our data allocation problem. 

• We show that other metrics (job turnaround time) and 
restrictions (monthly budget) can be included in our 
framework; we use the BLAST and MODIS 
applications as examples. For MODIS, our storage and 
compute allocation for a budget of $1,000 has an 
average turnaround time of 1.64 hours per job. Had the 
user selected a pure cloud allocation (Azure) the 
monthly cost would have been over $2,000. Conversely, 
a purely local solution would have been cheaper, but the 
turnaround time would have been 52% higher.  

The rest of this paper is organized as follows: following this 
introduction we present the related work in Section 2. Section 3 
introduces the formalization of the resource allocation problem. 
Section 4 shows the software implementation of this algorithm; 
here we present two examples, the performance of the 
algorithm, the scalability of our approach, and the sensitivity of 
the (optimal) solutions that the algorithm produces. In Section 
5 we present the BLAST and MODIS use cases. Finally, we 
discuss the current limitations of our approach and outline 
future work in Section 6 before concluding with Section 7. 

II. RELATED WORK 

The theoretical foundation of the file allocation problem 
was formalized by Chu several decades ago [4]. In this problem 
we have a set of computers interconnected by a network which 
provides storage for a set of files. Each file can be stored in 
multiple computers, and the problem model takes into account 
the cost and capacity of storage and transmission, and the 
maximum latency allowed for each access. The optimal 
solution is the one that minimizes the cost of storage and 
transmission. Chu’s work formulates the problem as a zero-one 
integer linear programming problem, which is NP hard. This 
problem model, however, does not address some of the users’ 
requirements outside cost and maximum latency; it also does 
not take into account the possibility of multiple sites. Thus, it 
does not apply directly to data management in cloud 
computing. Other similar work by Casey has formulated a 
problem model for allocating multiple replicas of a file in a 
distributed system [5] taking into account the cost of storage 
and data transmission and the read and update queries: this 
problem is still NP hard. Subsequent work on the file allocation 
problem has addressed the complexity of these models by 
filtering sites that participate or not in an optimal solution [6], 
devising polynomial-time approximation algorithms based on a 
reduction of the file allocation problem to the Knapsack 
problem [7] or other heuristics that iteratively refine feasible 
initial solutions [8]. Dowdy and Foster [9] identified 12 
different models of the file allocation problem which differ on 
several parameters: minimizing cost, execution time, access 
time, response time or maximizing throughput; considering 
single files, multiple files or data and program files; etc. Later 
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variations of the problem [10], [11] considered also a dynamic 
approach as the storage needs change over time and also the 
location of program files associated with data files [12]. To the 
best of our knowledge, the most common software for 
managing data grids (SRB, iRODS, GPFS, HPSS) does not 
implement these file allocation algorithms. In data grids we can 
usually find a dedicated part of a site to storage, and the rest of 
the nodes access data through the network. Thus, there is not a 
concern for optimizing data storage costs at the individual 
computer level and the majority of the access to the data occurs 
within the site. However, with the introduction of cloud 
computing there is the possibility of renting storage space at 
different sites, making the file allocation problem relevant 
again. The unique characteristics of our approach are: our 
problem model was built specifically for data management in 
cloud computing (as opposed to within a local cluster), and we 
present an implementation that is fast enough to provide an 
optimal solution. This fast solution is based upon recent 
advances on the development of efficient boolean satisfiability 
solvers [13] and ILP solvers [3]. 

III. RESOURCE ALLOCATION PROBLEM MODEL 

In this section we describe our mathematical model used to 
express the data allocation problem in cloud computing. Our 
goal is the following one: to select the best storage systems 
which meet the user’s data requirements and optimize cost 
and/or access latency/bandwidth. Recall that the first stage in 
our system (described in Figure 1) is a matching process whose 
inputs are a list of user's requirements and the storage services' 
capabilities. The output of this first stage is a list of compatible 
storage services for each dataset in the application; these lists 
constitute the input for our data allocation problem. We use 
integer linear programming to model this problem. The general 
idea is to include the cost, latency, and bandwidth as 
parameters in the objective function that needs to be 
minimized. Of the variables that we introduce, 0-1 integer 
variables tell us which storage systems will store which 
datasets (xi,j); the solution to the problem will be an optimal 
assignment of datasets to storage systems. We also introduce 
integer variables that represent the amount of computation 
required per month; the solution also yields an assignment of 
computation to cloud sites (computationk). We use additional 
linear constraints to enforce different restrictions; for example, 
that each dataset is stored in at least one storage system and 
that each site can support the computations that access each 
dataset. A glossary of all the terms used in the equations in this 
section is shown in Error! Reference source not found.This 
table gives the type, description and source (user input, part of 
the storage capabilities information and part of the solution) for 
each variable. The objective function is the following one, 
where each wi is the combination of a weight assigned by the 
user and a normalizing factor: 
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We need to combine every term in a meaningful way. In 

order to evaluate cost (in dollars), latency (milliseconds), and 
bandwidth (MB/s), we consider the average over all the 
application datasets and normalize it. We normalize each 
parameter to the average calculated from all the cloud storage 
systems (optionally the user may provide their own). The user 

will give us αi, which represents the weight (between 0.0 and 
1.0, totaling 1.0) for each term: 
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For example a solution could have a normalized storage 
cost of 1.15 and a normalized latency of 0.95, meaning that the 
storage cost is on average 15% more expensive but latency is 
5% better. The best solution is then determined by the αi. It is 
possible to easily give the user more control by expanding the 
formula and introducing αi, j (weights that depend on each 
parameter and the dataset).   This way it would be possible to 
fine tuned each dataset in case there is one that is critical to the 
application flow, which could have, for example, a low latency 
requirement. 

 We will first expand the Average Storage Cost term, which 
represents the average monthly cost per GB of data stored: 

TABLE I.  PROBLEM MODEL VARIABLES 

Name Description Source 

Xi,j 
Binary, allocation of dataseti in 

storagej 
Solution 

Yi,j,k 
Integer, number of data transfers for 

dataseti from storagej to sitek 
Solution 

Computationk 
Integer, number of application runs at 

sitek 
Solution 

Dataset Sizei Float, size of dataseti in GB User input 

Dataset 
Requesti 

Float, number of monthly storage 
requests for dataseti 

User input 

Dataset Usagei 
Float, percentage of dataseti accessed 

by the average application run 
User input 

Computation 
Length 

Float, number of hours per application 
run 

User input 

Site Capacityk 
Float, number of computational hours 

available per month at sitek 
User input 

CostTransfer 
IN/OUTj,k 

Float, cost in dollars for GB of data 
transfer IN/OUT storagej to sitek 

Storage 
Capabilities 

Cost Requestsj Float, cost per request on storagej 
Storage 

Capabilities 

Cost Hourk Float, cost per compute hour in sitek 
Storage 

Capabilities 

Cost Storagej 
Float, cost per GB per month in 

storagej 

Storage 
Capabilities 

Latencyj,k 
Float, latency in ms when accessing 

data in storagej from sitek 

Storage 
Capabilities 

Bandwitdhj,k 
Float, bandwidth in MB/sec when 

accessing data in storagej from sitek 
Storage 

Capabilities 
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In our actual implementation, these equations are more 
complex since the pricing structure for some cloud providers is 
not flat: there is layering pricing, monthly plans, special offers, 
etc. However, these equations reflect the most important 
parameters involved and we'll use them in our problem model 
description for simplicity. The calculation of transfers cost is 
straightforward if the dataset is not replicated across different 
storage systems. If we want to allow datasets to be stored in 
several storage systems then each computation is going to 
select one of the replicas based on the transfer cost and access 
latency/bandwidth; depending on the actual values for the αi. In 
order to express this in the objective function we introduce the 
variable yi,j,k which represents the number of transfers of data 
(per month) of dataseti from storagej to sitek (where 
presumably there are some computational resources that 
process the data). Together with this part of the objective 
function we need additional constraints for each variable yi,j,k: 
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�																																				 
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These constraints establish that, for every dataseti and for 
every sitek, the total number of dataseti transfers needed (from 
any storagej, thus	∑ ��,U,�U ) equals the number of computations 

at that sitek. An additional restriction is that if we transfer data 
from storagej to sitek, the data must be there (if xi,j is zero, then 
so it is yi,j,k): 
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The second term, the compute cost equation, can be 
expressed as: 
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The third main term, Average Latency, can be expressed as: 
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 (10) 
This term leverages the variables yi,j,k introduced for the 

cost calculation. Here we find the latency for each data transfer, 
multiply by the weight of that data transfer and divide it by the 
number of data transfers so we can obtain the average access 
latency. 

The expression for fourth term, Average Bandwidth, 
mirrors Average Latency: 
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Aside from the objective function, we must provide our 
integer linear programming solver with these additional linear 
constraints (data has to be stored somewhere, computationk 
does not exceed site capacity and all computationk add up to the 
application needs): 
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In this section we have considered the following four 
factors: storage cost, compute cost, latency, and bandwidth. We 
believe that these are important metrics for the user; others are 
certainly possible. Some, such as availability or durability, 
come into play in our previous stage, where datasets are 
matched to possible storage systems based on capabilities and 
requirements. Thus, these metrics come into play as a filter, 
where the decision is binary and do not participate in the 
objective function. We present an example in Section V.B 
where a new metric (job turnaround time) should be included 
into the objective function so the solution strives to minimize 
this metric. 

IV. RESOURCE ALLOCATION PROBLEM SOLVER 

In this section we describe the software implementation that 
solves the problem model introduced in the last section. As we 
have mentioned in the introduction, this software does not exist 
in isolation or as a purely theoretical approach; rather we see 
the data allocation problem solver as a component of a larger 
project, shown in Figure 1. The first component is the storage 
capability matcher, which takes two inputs: a machine readable 
description of the cloud storage systems (storage capabilities), 
and a set of requirements from the end user for each dataset in 
the application. The output is a filtered set of possible storage 
systems for each dataset, along with the information that our 
problem model requires. Like the storage capability matcher 
that it interacts with, our solver is implemented as a C# 
prototype that uses the Microsoft Solver Foundation [14] 
library. Thus, we have the ability of use the default solver or 
plug in another that is compatible with the Solver Foundation 
interface; for the experiments presented in this paper lp_solve 
[3] was selected as the ILP solver. At this stage, the output of 
our GUI is a textual representation of the problem instance and 
the solution, along with additional details/statistics that MSF 
provides; further automatization is planned (Section VI). The 
experiments have been run on our desktop machine, an AMD 
Athlon II X4 2.90GHz with 6 GB of RAM running Windows 
7. 

A. Basic Examples 

Our first example is taken from our previous paper on 
storage service selection [15]. In this case, we present an 
application with three different sets of data: a) satellite data (10 
GB), b) intermediate storage shared by workers (1 GB), and c) 
output files (2 GB). The solver presents us with the following 
optimal solution: satellite data goes to both Amazon S3 in 
Virginia and the local NFS cluster, both intermediate results 
and output go to the S3 Reduced Redundancy Storage, 30 of 
the application runs happen in the local cluster (this maxes out 
the allocated capacity for this application) and the rest of them 
go to Amazon EC2 in Virginia. This solution takes into account 
many issues: S3 is selected to comply with the user 
requirements of high durability for satellite data, a local copy 
of the input dataset is created to reduce transfer costs, local 
computational resources are used to minimize cost, and 
additional cloud resources are chosen based on cost and access 
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latency. The problem model for this example has a total of 149 
variables and it takes 88 ms to solve. The problem input and 
the output from the solver for this example and the next one is 
available on our website [16].  

Our second example is a MapReduce application which has 
an input dataset of 1 TB and generates 10 GB output. Local 
resources can support a normal daily run of this application, but 
a few times per month a more complex analysis is required. For 
this use case we get the following solution: store the input data 
in both the Amazon cloud (S3 RRS in Virginia) and the local 
NFS; the output is stored locally only. In this case the cost of 
data transfer exceeds the cost of storage for additional replicas; 
again the Amazon cluster in the region comes out as the best 
option for cost/latency. Solving time for this example is 148 
ms; the ILP problem contains 94 variables.  

B. Scalability of the solver 

In this subsection we show the scalability of our approach 
when the number of variables starts increasing. This aspect is 
very important since we are dealing with an NP hard problem. 
More complex examples than in the previous subsection are 
certainly possible: the number of cloud providers could 
increase in the future, cloud providers will launch new storage 
services, new datacenters will be built and applications may 
include more datasets. The potential increase for each of these 
factors is also limited, though: the space for potential new 
cloud providers is limited (it requires capital to build 
datacenters and the software infrastructure); cloud providers 
cannot develop and offer support for a large number of storage 
abstractions; there are constraints in the placement of new, big 
datacenters (availability of cheap electricity); and users may 
have a limited ability to manage multiple sets of data instead of 
consolidating multiple data with similar characteristics into a 
dataset to be managed as a unit. 

We present our results on Error! Reference source not 
found.. For this graph we generate different storage systems 
with random costs (normally distributed against around 
averages such as 10 cents per GB per month for storage cost) 
and feed the problem model to the solver. In this scenario we 
generate 4 different cloud providers, each one with a number of 
datacenters within the United States (from 1 to 6) a several 
matching storage systems (again, from 1 to 6). We consider an 
application with 3 different datasets. For example, if we choose 
3 datacenters and 4 storage systems, the possible number of 
storage systems for a datasets is: 4 clouds * 3 datacenters/cloud 
* 4 storage systems/datacenter = 48 possible storage systems. 
In this case the ILP solver comes up with a solution in 1.08 
seconds, on average. In our worst case scenario there are 144 
possible storage systems for each dataset and the average time 
it takes to solve the allocation problem is 37.49 seconds; right 
now we believe that for each dataset there may be an order of 
10 possible storage systems (0.106 seconds solving time) and 
that, for the reasons mentioned above, an increase of several 
orders of magnitude is unlikely. And even if this increase were 
to take place there are still a number of ways to reduce solving 
time. One of the most obvious ways is to perform better 
filtering based on storage capabilities matching since it can 
greatly reduce the size of the problem. Another option is tuning 
the ILP solver to the characteristics of our objective function 

and constraints. Right now we use the lp_solve solver with the 
default settings with one customization: we add a pre-solve 
stage that deletes variables dominated by other variables. 
Further customizations may be possible or even using a 
complete different solver. However, we consider that these 
results meet our requirements and no further optimizations are 
needed. 

In Error! Reference source not found. we chose to set a 
constant number of cloud providers and application datasets; 
we can generate an n-dimensional graph in which we vary 
these two parameters too. However, we think that a more clear 
representation will be to plot the solving time against the 
number of variables in the problem model, like in Error! 
Reference source not found.. The parameters number of cloud 
providers and number of datacenters per cloud provider affect 
the number of possible storage systems. The size of the ILP 
problem is based on this number: 

�. �Z		��!�rt
� = 	∑  ����
��D ∗ (�����
	����
��D ∗D������
	�!�
� + �����
	����
��D)	  (15) 

The data in Error! Reference source not found. comes 
from running different scenarios, which include variations in 
the number of cloud providers, datacenters and storage 

 

Figure 2. Solve time in seconds as a function of the number of datacenters 
per cloud provider (X axis) and the number of storage systems available per 
cloud provider and per datacenter (graph lines). Each data point represents 

the average over 20 runs. 

 
Figure 3. Solve time in seconds as a function of the number of variables in 

the data allocation problem formulation. One data point represents a single 
solver execution that returns a 2-tuple (# variables, solve time). A fitted 

power equation is also included. 
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systems. This figure shows a relationship between the number 
of variables and solving time that can be approximated by a 
power function, which fits the data very well (R2 is greater than 
0.92). Since the exponent of this power function is small (x1.67), 
problem sizes with a few thousand variables can be solved fast. 
The same figure also shows that as the problem size increases 
the variability of the results does too.  

In summary, we believe that, given problem sizes based on 
current cloud offerings, the data allocation problem in cloud 
computing can be solved in under a second. Future growth of 
cloud providers and interfaces may push this threshold to half a 
minute if there is an order of magnitude increase; these results 
were generated with a standard desktop machine and make no 
assumptions regarding performance improvements of future 
ILP solvers or the development of new heuristics.  

C. Sensitivy of the solution 

Previously we have described how we arrive to an optimal 
solution based on the inputs from the user and the current state 
of the cloud providers. In this subsection we discuss how this 
solution is affected by the inputs. We have considered three 
factors that affect the user's confidence on a given solution: the 
variability of cloud providers’ cost and performance; the user-
provided weights in our objective function; and the accuracy of 
the user’s estimation of data requirements. Over the long term 
the performance and cost of different cloud providers will vary; 
however we consider this to be a factor that is too difficult (or 
impossible for the user) to predict and that its short term 
variability is small. Price changes are infrequent and our 
experience seems to show that performance over the short term 
(weeks) is, on average, mostly stable [2]. 

The user-provided weights for our objective function will 
have a much greater impact. For example, a user may select the 
weights for the storage costs, compute costs, latency and 
bandwidth to be 0.30, 0.30, 0.20, and 0.20, respectively. How 
does the user select these quantities and not 0.25, 0.30, 0.25 
and 0.20? Would that lead our system to arrive to a completely 
different solution? Essentially we have here a 4-dimensional 
space in which each point represents the data allocation 
solution. Since our solver is fast, we can choose to re-run the 
solver with the different parameters and compare the new 
solution with the given one; if they are the same we consider 
these two points to be in the same volume (which represents a 
data allocation). In order to provide a visual representation of 
this, we have run our first example in Section 0 A with 
different weights for storage, compute and latency. We start 
with data point (0.33, 0.33, 0.33) and process its neighbors; if 
they are the same solution we add the point to the output and 
recurse; the 3D convex hull of these points is shown in Figure 
4. From this data set we can also find out the limit values for 
each alpha: all other alphas being equal, what is the range for 
each alpha that maintains the same solution? These ranges are: 
for the storage cost [0.26, 0.42], for the compute cost [0.275, 
0.375] and for latency [0.29, 0.37].  In this example we do have 
a medium range of values whose solution is shared; in other 
problem instances we may have a much smaller (or larger) 
range. We want to emphasize that a short range is not 
necessarily a bad option; if the user is confident about the 
weight values then we give a correct and optimal solution. 

However, in cases where these weights are a ballpark estimate 
the graphs and numerical ranges shown should be useful. 

We end this section with a discussion of the user-provided 
data requirements. In many instances it is difficult to estimate 
the output size of an application, or the number of application 
runs (and their length). Similarly to our discussion of the 
weights (alphas) we can re-run our solver varying different 
input parameters; we continue using the same example. In this 
case we have chosen the sizes of the first and second datasets. 
We assign each dataset a range of possible sizes: for dataset 
one from 10 to 30 GB and for dataset 2 from 1 to 4 GB; each 
point in this 2D space represents a data allocation solution. We 
have represented the data in Figure 5. We start with the original 
solution in the bottom left corner of the graph and compare it to 
each other solution. If they are the same we use a diamond 
marker, otherwise we use a different marker. As it turns out in 
this space there is only one other possibility; this other solution 
becomes the optimal one as we increase the size of the second 
datasets while the size of the first dataset remains under 15 GB. 
This graph compares only storage allocation decisions; 
compute (job scheduling) is not considered here. 

In summary, the solution that our system finds for a 
concrete data allocation problem is an optimal one, but we 
recognize that the inputs to this problem may not be exact. In 
order to avoid a garbage in, garbage out type of situation we 

 

Figure 4. Volume that represents the alpha values for which the same 
optimal solution exists. The starting values are 0.33 for all storage, 

compute and latency alphas. 

 
Figure 5. Solution space based on the sizes of datasets 1 and 2 for 

example in section IV A. Each of the two marker types represents a 
different data allocation solution. 
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re-run the solver with incrementally slight variations of the 
input parameters and compare the outputs. In this section we 
have explored a couple of data representations that can provide 
the user with information on how stable the solution is. This 
analysis is possible because of the fast solving stage; we can 
analyze hundreds of data points and generate the graphs shown 
in a few minutes. 

V. USE CASES 

In this section we present two possible use cases with two 
scientific applications, BLAST and MODIS. In the first use 
case (BLAST) we modify our formula to add a budget 
constraint. Thus, a use can ask our system to give the best 
solution given a budget of $250 per month (or any other 
figure). In the second use case (MODIS) we show how we can 
modify our formula beyond the cost (storage and compute), 
latency, and bandwidth terms. Here we add computational 
length as a term so the user can ask for the solution with the 
shortest job completion time, given a set budget (and in 
addition to the usual data requirements). 

A. BLAST 

The Basic Local Alignment Search Tools is a very popular 
algorithm in bioinformatics which enables the search of genetic 
sequences. We use the following parameters for the datasets 
and the computation requirements: 20 GB input dataset 
(approximately the size of the publicly available human 
databases), 30 seconds query time, and 30 KB of output in 
table format per query. We want to find out, with a limited 
budget, what is the best solution for a set number of queries per 
month. In order to do so we will modify the problem 
formulation by moving the storage and compute costs from the 
objective function (2) to a new linear constraint: 

�� 
� ≥ �����
	���� + Y����Z
�	���� +W
X�
��	���� + ������
	����  (16) 

The first three costs are defined in equations (4), (5) and (6) 
and the Compute Cost term is equal to: 

������
	���� = 	∑ ��������!��v ×	����w���vv   (17) 

We run different scenarios that are represented in TABLE 
II. Each run of our prototype is given a budget and a number of 
queries and returns the data allocation for both the input and 
output datasets. We iteratively increment the number of queries 
per month (5,000 more each step) till the system is not 
solvable; each row of the table shows the scenario with the 
maximum number of queries. 

TABLE II.  BLAST ON A BUDGET 

Monthly 

Budget 
Input Dataset Output Dataset Number of Queries 

$100 
AWS S3 RRS, VA 

Local NFS, VA 
Local SQL, VA 

60,000 (local) 
15,000 (EC2, VA) 

75,000 (total) 

$250 
AWS S3 RRS, VA 

Local NFS, VA 
Local SQL, VA 

60,000 (local) 
50,000 (EC2, VA) 

110,000 (total) 

$500 
AWS S3 RRS, VA 

Local NFS, VA 
Local SQL, VA 

60,000 (local) 
110,000 (EC2, VA) 

170,000 (total) 

$1000 
AWS S3 RRS, VA 

Local NFS, VA 
Local SQL, VA 

60,000 (local) 
225,000 (EC2, VA) 

Monthly 

Budget 
Input Dataset Output Dataset Number of Queries 

285,000 (total) 

All the solutions share the same data allocations: the input 
dataset is replicated in the local cluster (NFS) and in the 
Amazon datacenter in Northern Virginia (S3 Reduced 
Redundancy Storage); the output dataset is stored in a local 
MySQL database. For query processing the local machine is 
maxed out in every case at 60,000 queries per month; 
additional compute power is allocated in Amazon. The 
different budget levels give us the maximum number of 
queries; this takes into account the cost of the data replication, 
the transfer of output data for the computations carried out in 
Amazon, and the cost of the EC2 machines. In this example we 
consider a local machine to be equal in power to the Amazon 
EC2 medium instance; in the next section we show how to take 
into account the differences between instance types.  

B. MODIS Cloud Bursting 

Our next example uses the MODIS Azure scientific 
application. This application processes satellite data from 
several years to present analysis on certain processes, for 
example evapotranspiration on the earth surface. A previous 
paper [17] has presented the performance results of the 
application running on Windows Azure, the local Windows 
HPC cluster, and a combination of both. The combination of 
local and cloud resources is labeled cloud bursting; the paper 
present performance numbers for tasks that are allocated in the 
cloud and need to find the input data (stored locally in blobs or 
remotely in files). This paper concludes the evaluation section 
with “We have found that in general the determining factor is 
data –where it is and how much is moved. In many situations 
the key to successful cloud bursting is to minimize data 
movement”. Hence, we believe that this application can benefit 
from our data allocation algorithms. 

In this case we are not considering latency or bandwidth as 
important metrics; we use average computation length (or 
turnaround time) instead. Thus, our first step is appending the 
following term in our general formula (1): 

	�x ∗ �	
��
	��������!��	�
��ℎ = 

Figure 6. Relationship between the average turnaround time of jobs processing 
one year’s data and the monthly budget. We also show the percentage of local 

computations: as the budget increases better machines are rented from the 
Azure cloud and turnaround time improves. 
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We changed the variable computek to computek,h; this 
variable now means “number of monthly computations on sitek 
using profilek,h”. We think of a profile as a different running 
configuration; for example one profile could be 8 extra-large 
workers on Azure, and another one 32 medium Azure workers. 
The computation length is the time it takes to complete in the 
standard local profile; the speedk,h modifiers come from 
benchmarking. Given this modification, and the one presented 
in the previous subsection, we can ask our system to give us the 
best data and compute allocation that give us the fastest 
turnaround time for jobs for a given budget. 

The input parameters are the following ones: each year’s 
data is separated into day files; on average each day has 2.96 
GB of input data and its process generates 5.70 MB of output 
after using 416 MB of temporary storage; we store the data for 
years 2000 to 2010. Each computation access a complete year, 
that is, 1/10th of each dataset and its length depends on the 
machine being run on. The actual numbers used for these input 
parameters are taken from the referenced paper. The solution 
allocates the input and output data in both the Azure Blob (US 
North Central datacenter) and the local HPC Cluster. The 
computation is done by the local cluster nodes and medium 
size nodes in Azure. Figure 6 presents two measurements 
regarding the computation (at different budget levels): the 
percentage of application runs done in the local cluster and the 
average turnaround time for each application run (which 
processes and reduces one year of satellite data). The lower the 
budget the more computations we do locally and the slower 
these computations are. Given this information about this 
tradeoff (cost vs. speed) the user can make sound allocation 
decisions based on her preferences or requirements. 

VI. LIMITATIONS AND FUTURE WORK 

As we have seen in the previous sections, our approach 
relies on having accurate information on the capabilities of the 
cloud providers. Currently there are multiple websites that 
continuously benchmark cloud providers like Amazon or 
Azure; we believe that the community will greatly benefit of 
having a more thorough approach with more metrics and 
making the data machine consumable (as opposed to web 
graphs). Another limitation that is present for developed 
applications is that interfaces are different across clouds; it is 
difficult to modify an application to make it possible to run on 
different clouds. The solution to this issue will probably come 
by having cloud-agnostic APIs for data access (such as CSAL) 
and by introducing more compatibility at the execution level: 
running arbitrary apps for Platform as a Service providers 
(Windows binaries on Azure), having compatible APIs 
(Eucalyptus and Amazon) or other ports (Google App Engine 
on Amazon EC2).  

One final limitation is related to our allocation of 
computation. In this paper we have introduced a planning 
phase that gives us a data allocation solution and a coarse-
grained approach to computation: we do not take into account 
factors such as the hourly billing of cloud providers, the VM 
startup time and the shape of the computation (single-threaded, 
workflow, etc.). We believe that all these factors are better 

accounted for with an online approach. Thus, the next step in 
our work is the data-aware Scheduler component (Figure 1). 
We would like to explore dynamic algorithms that make the 
actual scheduling decisions as the job request come. In addition 
to this scheduling phase we would like to explore the 
possibility of integrating our resource allocation solutions with 
a distributed data system (for example, iRODS) so we can 
automate our approach further. 

VII. CONCLUSION 

In this paper we have presented our approach to data 
allocation in cloud computing. Building upon our previous 
work, where we match each application dataset with a set of 
possible storage services based on storage capabilities and data 
requirements, we first generate an integer linear programming 
problem that takes into account storage and compute costs, 
latency, and bandwidth. This ILP problem model takes into 
account the unique characteristics of cloud computing. Our 
software implementation uses an ILP solver to find an optimal 
data allocation solution in one second or less; we have also 
shown that our approach is scalable as the number of cloud 
providers, datacenters or storage services increase. These short 
running times also allow us to gather more information about 
the sensitivity of this solution and present it to the user. Finally 
we have presented two use cases with the BLAST and MODIS 
applications. Small changes in our problem formulation allows 
us to add a monthly budget restriction and to minimize job 
turnaround time in our optimal solutions; combining local and 
cloud resources we can halve the cost compared to a cloud-
only approach or increase job turnaround time by 52% 
compared to a local-only approach.. 
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