
www.manaraa.com

A Model and Decision Procedure for Data Storage in
Cloud Computing

Arkaitz Ruiz-Alvarez, Marty Humphrey

Computer Science Department
University of Virginia

Charlottesville, VA, USA

Abstract—Cloud computing offers many possibilities for

prospective users; there are however many different storage and

compute services to choose from between all the cloud providers

and their multiple datacenters. In this paper we focus on the

problem of selecting the best storage services according to the

application's requirements and the user's priorities. In previous

work we described a capability based matching process that

filters out any service that does not meet the requirements

specified by the user. In this paper we introduce a mathematical

model that takes this output lists of compatible storage services

and constructs an integer linear programming problem. This ILP

problem takes into account storage and compute cost as well as

performance characteristics like latency, bandwidth, and job

turnaround time; a solution to the problem yields an optimal

assignment of datasets to storage services and of application runs

to compute services. We show that with modern ILP solvers a

reasonably sized problem can be solved in one second; even with

an order of magnitude increase in cloud providers, number of

datacenters, or storage services the problem instances can be

solved under a minute. We finish our paper with two use cases,

BLAST and MODIS. For MODIS our recommended data

allocation leverages both cloud and local resources; it incurs in

half the cost of a pure cloud solution and the job turnaround time

is 52% faster compared to a pure local solution.

Keywords: data allocation; cloud computing; integer linear

programming

I. INTRODUCTION

To decide which cloud platform [1] is best for a new cloud
application, typically a designer focuses on compute
capabilities as the deciding factor. That is, after it is decided if
it will be public-, private-, or hybrid-cloud, a high-level
decision is made regarding PaaS vs. IaaS, and then a
subsequent decision selects the particular platform within the
class (e.g., IaaS and then Amazon EC2). Implicit in this process
is a belief that the storage capabilities of each cloud are
basically equivalent or at least not sufficiently distinguishable
to warrant closer consideration as to the choice of cloud
platform.

However, we believe that data capabilities should be a first-
class consideration when selecting a cloud platform, at the
same level of importance as computation. Arguably
computation is more flexible: a Windows application can run
on a native Windows OS (local Windows HPC cluster or
Windows Azure) or within a virtual machine (local Eucalyptus
cluster or Amazon EC2). Storage services, on the other hand,
present many different options whose capabilities are
sometimes exclusive to a cloud provider; choices range from

traditional files (NFS) and SQL databases in local clusters to a
variety of cloud services (for Amazon there are S3, EBS,
SimpleDB, RDS and ElastiCache).

In previous work [2] we presented the first phase of a
system designed to help with the cloud storage service
selection decision. First, we developed an XML schema that
describes the capabilities (both functional and non-functional)
of the storage services of Amazon, Windows Azure and local
clusters. We can express different attributes like the encryption
capability of S3, the performance of Windows Azure Tables
for a read operation under multiple concurrent clients or the
capacity of the local NFS file system. Second, we encoded
different user requirements; each requirement will look at a
certain storage service and decide whether there is a match
(true/false decision). Custom user requirements can be added
easily, some examples of the ones developed by us are: “data
must be located within the United States”, “data must be triple
replicated or with specified durability of >99.999%” or “data
can be accessed concurrently”. The input for our prototype
application is a description of the different datasets that the
application uses, together with their storage requirements. The
output is, for each dataset, a list of storage services that meet
those requirements, along with cost and performance estimates.

For example, an application may use three different
datasets: several GBs of input satellite data, intermediate
storage shared among different processes and several MBs of
output files. Our prototype will give a list of possible storage
services for dataset; for the satellite data it may be: Amazon S3
in Virginia and California, Azure Blobs in South-central and
North-central US, etc. Similar lists are presented for the other
two datasets. The user would then choose an allocation from

Figure 1. Overview of our system. In this paper we focus on the Data
Management component.

Preliminary version. Final version appears in Proceedings of the IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing (CCGrid’12), May 13-16, Ottawa Canada

www.manaraa.com

these options: satellite input to S3, intermediate data to
SimpleDB and output data to S3 RRS in Amazon Virginia.

While we believe that this prototype is valuable, there are
three important limitations: the list of storage options for each
dataset is not ordered, that is, we do not present a preferred
storage option; each dataset is analyzed in isolation so it is not
obvious what the best global solution is; and the computational
side (number of application runs, cost per hour, machine speed,
etc.) is not taken into account. In this paper we seek to address
these limitations so we can produce a global data allocation
solution that balances cost and performance of both storage and
computation. If the best storage service for a single dataset
resides in a cloud that does not have good choices for the rest
of the application data, then we may arrive to a sub-optimal
allocation of data. As we will show, trying to find an optimal
solution increases the complexity of the problem to NP hard.
We provide a model for this data allocation problem and a
software implementation that is both fast and scalable.

Figure 1 shows a general overview of our system. On the
right side we have the different datacenters with storage and
compute services that cloud providers and others (local
clusters) provide. On the left side we have the user that
provides the data, the data requirements, and information about
the execution of the application (number of runs, duration,
datasets accessed). We have already mentioned our approach
[2] to describe the storage capabilities and data requirements
in a machine readable format and perform a capability-based
matching. The output of this first stage is taken as the input for
this paper; our final goal is to produce the data allocation
decisions. Thus, we complete the component Data
Management in Figure 1; we leave the Scheduler and
Distributed Data System components as future work.

We will first present our problem model, whose solution
represents the data allocation decision. Factors such as storage
cost, compute cost, latency, and bandwidth are combined into
an objective function that has to be minimized. The
combination of this function and additional restrictions (linear
constraints) forms an integer linear programming problem,
which is NP hard. In order to solve this computationally hard
problem we use a modern ILP solver (lp_solve [3]); we show
that, for simple use cases, a couple hundred milliseconds are
enough to solve the problem instance. For a more complex
application with 3 datasets and where each dataset could be
matched to 48 possible storage systems the solver takes 1
second to solve the ILP problem. We show that even with an
order of magnitude increase in the number of possible storage
and compute services our approach is able to come up with an
optimal data allocation within seconds.

We present two use cases for our system: BLAST and
MODIS. For BLAST we take our standard model and include
one additional restriction: a monthly budget. Thus, the user
may ask for the best data and compute allocation which fits her
budget. Latency and bandwidth are not the only performance
metrics that we have considered. For MODIS we add job
turnaround time as another factor in our objective function. In
this case we try to make the allocation decisions that will
minimize job turnaround time the most, while still meeting the
data requirements and the budget.

In summary, the contributions of this paper are:

• We introduce a formal model to represent the problem
of allocating resources (storage and computation) to
services offered by different cloud providers.

• We extend the implementation of our data management
system with an ILP solver to provide a timely optimal
solution to our data allocation problem.

• We show that other metrics (job turnaround time) and
restrictions (monthly budget) can be included in our
framework; we use the BLAST and MODIS
applications as examples. For MODIS, our storage and
compute allocation for a budget of $1,000 has an
average turnaround time of 1.64 hours per job. Had the
user selected a pure cloud allocation (Azure) the
monthly cost would have been over $2,000. Conversely,
a purely local solution would have been cheaper, but the
turnaround time would have been 52% higher.

The rest of this paper is organized as follows: following this
introduction we present the related work in Section 2. Section 3
introduces the formalization of the resource allocation problem.
Section 4 shows the software implementation of this algorithm;
here we present two examples, the performance of the
algorithm, the scalability of our approach, and the sensitivity of
the (optimal) solutions that the algorithm produces. In Section
5 we present the BLAST and MODIS use cases. Finally, we
discuss the current limitations of our approach and outline
future work in Section 6 before concluding with Section 7.

II. RELATED WORK

The theoretical foundation of the file allocation problem
was formalized by Chu several decades ago [4]. In this problem
we have a set of computers interconnected by a network which
provides storage for a set of files. Each file can be stored in
multiple computers, and the problem model takes into account
the cost and capacity of storage and transmission, and the
maximum latency allowed for each access. The optimal
solution is the one that minimizes the cost of storage and
transmission. Chu’s work formulates the problem as a zero-one
integer linear programming problem, which is NP hard. This
problem model, however, does not address some of the users’
requirements outside cost and maximum latency; it also does
not take into account the possibility of multiple sites. Thus, it
does not apply directly to data management in cloud
computing. Other similar work by Casey has formulated a
problem model for allocating multiple replicas of a file in a
distributed system [5] taking into account the cost of storage
and data transmission and the read and update queries: this
problem is still NP hard. Subsequent work on the file allocation
problem has addressed the complexity of these models by
filtering sites that participate or not in an optimal solution [6],
devising polynomial-time approximation algorithms based on a
reduction of the file allocation problem to the Knapsack
problem [7] or other heuristics that iteratively refine feasible
initial solutions [8]. Dowdy and Foster [9] identified 12
different models of the file allocation problem which differ on
several parameters: minimizing cost, execution time, access
time, response time or maximizing throughput; considering
single files, multiple files or data and program files; etc. Later

www.manaraa.com

variations of the problem [10], [11] considered also a dynamic
approach as the storage needs change over time and also the
location of program files associated with data files [12]. To the
best of our knowledge, the most common software for
managing data grids (SRB, iRODS, GPFS, HPSS) does not
implement these file allocation algorithms. In data grids we can
usually find a dedicated part of a site to storage, and the rest of
the nodes access data through the network. Thus, there is not a
concern for optimizing data storage costs at the individual
computer level and the majority of the access to the data occurs
within the site. However, with the introduction of cloud
computing there is the possibility of renting storage space at
different sites, making the file allocation problem relevant
again. The unique characteristics of our approach are: our
problem model was built specifically for data management in
cloud computing (as opposed to within a local cluster), and we
present an implementation that is fast enough to provide an
optimal solution. This fast solution is based upon recent
advances on the development of efficient boolean satisfiability
solvers [13] and ILP solvers [3].

III. RESOURCE ALLOCATION PROBLEM MODEL

In this section we describe our mathematical model used to
express the data allocation problem in cloud computing. Our
goal is the following one: to select the best storage systems
which meet the user’s data requirements and optimize cost
and/or access latency/bandwidth. Recall that the first stage in
our system (described in Figure 1) is a matching process whose
inputs are a list of user's requirements and the storage services'
capabilities. The output of this first stage is a list of compatible
storage services for each dataset in the application; these lists
constitute the input for our data allocation problem. We use
integer linear programming to model this problem. The general
idea is to include the cost, latency, and bandwidth as
parameters in the objective function that needs to be
minimized. Of the variables that we introduce, 0-1 integer
variables tell us which storage systems will store which
datasets (xi,j); the solution to the problem will be an optimal
assignment of datasets to storage systems. We also introduce
integer variables that represent the amount of computation
required per month; the solution also yields an assignment of
computation to cloud sites (computationk). We use additional
linear constraints to enforce different restrictions; for example,
that each dataset is stored in at least one storage system and
that each site can support the computations that access each
dataset. A glossary of all the terms used in the equations in this
section is shown in Error! Reference source not found.This
table gives the type, description and source (user input, part of
the storage capabilities information and part of the solution) for
each variable. The objective function is the following one,
where each wi is the combination of a weight assigned by the
user and a normalizing factor:

���(�� × �	
��

	�����

	���� +	�� 	× �	
��

	������
	���� +	�� 	× �	
��

	���
��� +	�� × �	
��

	��� �! �ℎ) (1)
We need to combine every term in a meaningful way. In

order to evaluate cost (in dollars), latency (milliseconds), and
bandwidth (MB/s), we consider the average over all the
application datasets and normalize it. We normalize each
parameter to the average calculated from all the cloud storage
systems (optionally the user may provide their own). The user

will give us αi, which represents the weight (between 0.0 and
1.0, totaling 1.0) for each term:

	��� $	 %&
'()*'+)	,-./ 01

23456
× �	
��

	�����

	���� +

		 %7
'()*'+)	,-./	8)*	9-:* 	× �	
��

	������
	���� + %;

'()*'+)	<'/)=,>	?. 	×
�	
��

	���
��� +	 %@

'()*'+)	A'=BCDB/9	EF/. 	× �	
��

	��� � !�ℎH (2)

For example a solution could have a normalized storage
cost of 1.15 and a normalized latency of 0.95, meaning that the
storage cost is on average 15% more expensive but latency is
5% better. The best solution is then determined by the αi. It is
possible to easily give the user more control by expanding the
formula and introducing αi, j (weights that depend on each
parameter and the dataset). This way it would be possible to
fine tuned each dataset in case there is one that is critical to the
application flow, which could have, for example, a low latency
requirement.

 We will first expand the Average Storage Cost term, which
represents the average monthly cost per GB of data stored:

TABLE I. PROBLEM MODEL VARIABLES

Name Description Source

Xi,j
Binary, allocation of dataseti in

storagej
Solution

Yi,j,k
Integer, number of data transfers for

dataseti from storagej to sitek
Solution

Computationk
Integer, number of application runs at

sitek
Solution

Dataset Sizei Float, size of dataseti in GB User input

Dataset
Requesti

Float, number of monthly storage
requests for dataseti

User input

Dataset Usagei
Float, percentage of dataseti accessed

by the average application run
User input

Computation
Length

Float, number of hours per application
run

User input

Site Capacityk
Float, number of computational hours

available per month at sitek
User input

CostTransfer
IN/OUTj,k

Float, cost in dollars for GB of data
transfer IN/OUT storagej to sitek

Storage
Capabilities

Cost Requestsj Float, cost per request on storagej
Storage

Capabilities

Cost Hourk Float, cost per compute hour in sitek
Storage

Capabilities

Cost Storagej
Float, cost per GB per month in

storagej

Storage
Capabilities

Latencyj,k
Float, latency in ms when accessing

data in storagej from sitek

Storage
Capabilities

Bandwitdhj,k
Float, bandwidth in MB/sec when

accessing data in storagej from sitek
Storage

Capabilities

www.manaraa.com

�	
��

	�����

	���� = J/-*'+)	K-./LM*'=.N)*	K-./LO)P:)./	K-./
M-/'<	QD+'A>/).	J/-*)B 	 (3)

�����

	���� = 	∑ SD,U 	× ����
��!V
D ×	���������

U 	D,U (4)

W
X�
��	���� = 	∑ SD,U × ����
�W
X�
���D × ����W
X�
��UD,U 	 (5) Y����Z
�	���� = 	∑ �D,U,[× 	 ����
��!V
D × ����
�\��

D 	×D,U,[]����Y����Z
���U,[+ ����Y����Z
�^\YU,[_ (6)

In our actual implementation, these equations are more
complex since the pricing structure for some cloud providers is
not flat: there is layering pricing, monthly plans, special offers,
etc. However, these equations reflect the most important
parameters involved and we'll use them in our problem model
description for simplicity. The calculation of transfers cost is
straightforward if the dataset is not replicated across different
storage systems. If we want to allow datasets to be stored in
several storage systems then each computation is going to
select one of the replicas based on the transfer cost and access
latency/bandwidth; depending on the actual values for the αi. In
order to express this in the objective function we introduce the
variable yi,j,k which represents the number of transfers of data
(per month) of dataseti from storagej to sitek (where
presumably there are some computational resources that
process the data). Together with this part of the objective
function we need additional constraints for each variable yi,j,k:

∑ ��,U,� 	= 	 ��������!���U 			⋯	∑ ��,U,a 	= ��������!��a 		U

																⋮ �	�!�
�																														c	�!�
�																																				
∑ �d,U,� =	��������!��� 						⋯		U ∑ �d,U,a 	= ��������!��a		U (7)

These constraints establish that, for every dataseti and for
every sitek, the total number of dataseti transfers needed (from
any storagej, thus	∑ ��,U,�U) equals the number of computations

at that sitek. An additional restriction is that if we transfer data
from storagej to sitek, the data must be there (if xi,j is zero, then
so it is yi,j,k):

																																		�D,U,[≤ 	 SD,U × �!�
	�����!��[∀	�D,U,[(8)

The second term, the compute cost equation, can be
expressed as:

�	
��

	������
	���� = ∑ ,-?8:/'/D-=g×	,-./h-:*gg
i:?A)*	-N	,-?8:/)	9-:*.	8)*	?-=/9 (9)

The third main term, Average Latency, can be expressed as:

�	
��

	���
��� = 	 ∑ >j,k,g×	<'/)=,>k,g	×B'/'.)/l.'+)jj,k,g
i:?A)*	-N	B'/'.)/.	×	i:?A)*	-N	'88<D,'/D-=	*:=.

 (10)
This term leverages the variables yi,j,k introduced for the

cost calculation. Here we find the latency for each data transfer,
multiply by the weight of that data transfer and divide it by the
number of data transfers so we can obtain the average access
latency.

The expression for fourth term, Average Bandwidth,
mirrors Average Latency:

�	
��

	��� �! �ℎ =
																										 ∑ >j,k,g×	A'=BCDB/9k,g	×B'/'.)/l.'+)jj,k,g

i:?A)*	-N	B'/'.)/.	×	i:?A)*	-N	'88<D,'/D-=	*:=. (11)

Aside from the objective function, we must provide our
integer linear programming solver with these additional linear
constraints (data has to be stored somewhere, computationk
does not exceed site capacity and all computationk add up to the
application needs):

																																						m��	
��ℎ	 ����
�D: ∑ SD,UU ≥ 1 (12)

m��	
��ℎ	�!�
[: ��������!��[× ��������!���
�
�ℎ	 < �!�
	�����!��[
 (13)

��������!��: ∑ ��������!��[≥ ���r
�	�Z	���.		����	�
�	����ℎ
 (14)

In this section we have considered the following four
factors: storage cost, compute cost, latency, and bandwidth. We
believe that these are important metrics for the user; others are
certainly possible. Some, such as availability or durability,
come into play in our previous stage, where datasets are
matched to possible storage systems based on capabilities and
requirements. Thus, these metrics come into play as a filter,
where the decision is binary and do not participate in the
objective function. We present an example in Section V.B
where a new metric (job turnaround time) should be included
into the objective function so the solution strives to minimize
this metric.

IV. RESOURCE ALLOCATION PROBLEM SOLVER

In this section we describe the software implementation that
solves the problem model introduced in the last section. As we
have mentioned in the introduction, this software does not exist
in isolation or as a purely theoretical approach; rather we see
the data allocation problem solver as a component of a larger
project, shown in Figure 1. The first component is the storage
capability matcher, which takes two inputs: a machine readable
description of the cloud storage systems (storage capabilities),
and a set of requirements from the end user for each dataset in
the application. The output is a filtered set of possible storage
systems for each dataset, along with the information that our
problem model requires. Like the storage capability matcher
that it interacts with, our solver is implemented as a C#
prototype that uses the Microsoft Solver Foundation [14]
library. Thus, we have the ability of use the default solver or
plug in another that is compatible with the Solver Foundation
interface; for the experiments presented in this paper lp_solve
[3] was selected as the ILP solver. At this stage, the output of
our GUI is a textual representation of the problem instance and
the solution, along with additional details/statistics that MSF
provides; further automatization is planned (Section VI). The
experiments have been run on our desktop machine, an AMD
Athlon II X4 2.90GHz with 6 GB of RAM running Windows
7.

A. Basic Examples

Our first example is taken from our previous paper on
storage service selection [15]. In this case, we present an
application with three different sets of data: a) satellite data (10
GB), b) intermediate storage shared by workers (1 GB), and c)
output files (2 GB). The solver presents us with the following
optimal solution: satellite data goes to both Amazon S3 in
Virginia and the local NFS cluster, both intermediate results
and output go to the S3 Reduced Redundancy Storage, 30 of
the application runs happen in the local cluster (this maxes out
the allocated capacity for this application) and the rest of them
go to Amazon EC2 in Virginia. This solution takes into account
many issues: S3 is selected to comply with the user
requirements of high durability for satellite data, a local copy
of the input dataset is created to reduce transfer costs, local
computational resources are used to minimize cost, and
additional cloud resources are chosen based on cost and access

www.manaraa.com

latency. The problem model for this example has a total of 149
variables and it takes 88 ms to solve. The problem input and
the output from the solver for this example and the next one is
available on our website [16].

Our second example is a MapReduce application which has
an input dataset of 1 TB and generates 10 GB output. Local
resources can support a normal daily run of this application, but
a few times per month a more complex analysis is required. For
this use case we get the following solution: store the input data
in both the Amazon cloud (S3 RRS in Virginia) and the local
NFS; the output is stored locally only. In this case the cost of
data transfer exceeds the cost of storage for additional replicas;
again the Amazon cluster in the region comes out as the best
option for cost/latency. Solving time for this example is 148
ms; the ILP problem contains 94 variables.

B. Scalability of the solver

In this subsection we show the scalability of our approach
when the number of variables starts increasing. This aspect is
very important since we are dealing with an NP hard problem.
More complex examples than in the previous subsection are
certainly possible: the number of cloud providers could
increase in the future, cloud providers will launch new storage
services, new datacenters will be built and applications may
include more datasets. The potential increase for each of these
factors is also limited, though: the space for potential new
cloud providers is limited (it requires capital to build
datacenters and the software infrastructure); cloud providers
cannot develop and offer support for a large number of storage
abstractions; there are constraints in the placement of new, big
datacenters (availability of cheap electricity); and users may
have a limited ability to manage multiple sets of data instead of
consolidating multiple data with similar characteristics into a
dataset to be managed as a unit.

We present our results on Error! Reference source not
found.. For this graph we generate different storage systems
with random costs (normally distributed against around
averages such as 10 cents per GB per month for storage cost)
and feed the problem model to the solver. In this scenario we
generate 4 different cloud providers, each one with a number of
datacenters within the United States (from 1 to 6) a several
matching storage systems (again, from 1 to 6). We consider an
application with 3 different datasets. For example, if we choose
3 datacenters and 4 storage systems, the possible number of
storage systems for a datasets is: 4 clouds * 3 datacenters/cloud
* 4 storage systems/datacenter = 48 possible storage systems.
In this case the ILP solver comes up with a solution in 1.08
seconds, on average. In our worst case scenario there are 144
possible storage systems for each dataset and the average time
it takes to solve the allocation problem is 37.49 seconds; right
now we believe that for each dataset there may be an order of
10 possible storage systems (0.106 seconds solving time) and
that, for the reasons mentioned above, an increase of several
orders of magnitude is unlikely. And even if this increase were
to take place there are still a number of ways to reduce solving
time. One of the most obvious ways is to perform better
filtering based on storage capabilities matching since it can
greatly reduce the size of the problem. Another option is tuning
the ILP solver to the characteristics of our objective function

and constraints. Right now we use the lp_solve solver with the
default settings with one customization: we add a pre-solve
stage that deletes variables dominated by other variables.
Further customizations may be possible or even using a
complete different solver. However, we consider that these
results meet our requirements and no further optimizations are
needed.

In Error! Reference source not found. we chose to set a
constant number of cloud providers and application datasets;
we can generate an n-dimensional graph in which we vary
these two parameters too. However, we think that a more clear
representation will be to plot the solving time against the
number of variables in the problem model, like in Error!
Reference source not found.. The parameters number of cloud
providers and number of datacenters per cloud provider affect
the number of possible storage systems. The size of the ILP
problem is based on this number:

�. �Z		��!�rt
� = 	∑ ����
��D ∗ (�����

	����
��D ∗D������
	�!�
� + �����

	����
��D)	 (15)

The data in Error! Reference source not found. comes
from running different scenarios, which include variations in
the number of cloud providers, datacenters and storage

Figure 2. Solve time in seconds as a function of the number of datacenters
per cloud provider (X axis) and the number of storage systems available per
cloud provider and per datacenter (graph lines). Each data point represents

the average over 20 runs.

Figure 3. Solve time in seconds as a function of the number of variables in

the data allocation problem formulation. One data point represents a single
solver execution that returns a 2-tuple (# variables, solve time). A fitted

power equation is also included.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

S
o

lv
e

 t
im

e
 i
n

 s
e

co
n

d
s

Datacenters per cloud provider

1 2

3 4

5 6

y = 4E-06x1.6717

R² = 0.9256
0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

S
o

lv
e

 t
im

e
 i
n

 S
e

co
n

d
s

Number of Variables in ILP problem

www.manaraa.com

systems. This figure shows a relationship between the number
of variables and solving time that can be approximated by a
power function, which fits the data very well (R2 is greater than
0.92). Since the exponent of this power function is small (x1.67),
problem sizes with a few thousand variables can be solved fast.
The same figure also shows that as the problem size increases
the variability of the results does too.

In summary, we believe that, given problem sizes based on
current cloud offerings, the data allocation problem in cloud
computing can be solved in under a second. Future growth of
cloud providers and interfaces may push this threshold to half a
minute if there is an order of magnitude increase; these results
were generated with a standard desktop machine and make no
assumptions regarding performance improvements of future
ILP solvers or the development of new heuristics.

C. Sensitivy of the solution

Previously we have described how we arrive to an optimal
solution based on the inputs from the user and the current state
of the cloud providers. In this subsection we discuss how this
solution is affected by the inputs. We have considered three
factors that affect the user's confidence on a given solution: the
variability of cloud providers’ cost and performance; the user-
provided weights in our objective function; and the accuracy of
the user’s estimation of data requirements. Over the long term
the performance and cost of different cloud providers will vary;
however we consider this to be a factor that is too difficult (or
impossible for the user) to predict and that its short term
variability is small. Price changes are infrequent and our
experience seems to show that performance over the short term
(weeks) is, on average, mostly stable [2].

The user-provided weights for our objective function will
have a much greater impact. For example, a user may select the
weights for the storage costs, compute costs, latency and
bandwidth to be 0.30, 0.30, 0.20, and 0.20, respectively. How
does the user select these quantities and not 0.25, 0.30, 0.25
and 0.20? Would that lead our system to arrive to a completely
different solution? Essentially we have here a 4-dimensional
space in which each point represents the data allocation
solution. Since our solver is fast, we can choose to re-run the
solver with the different parameters and compare the new
solution with the given one; if they are the same we consider
these two points to be in the same volume (which represents a
data allocation). In order to provide a visual representation of
this, we have run our first example in Section 0 A with
different weights for storage, compute and latency. We start
with data point (0.33, 0.33, 0.33) and process its neighbors; if
they are the same solution we add the point to the output and
recurse; the 3D convex hull of these points is shown in Figure
4. From this data set we can also find out the limit values for
each alpha: all other alphas being equal, what is the range for
each alpha that maintains the same solution? These ranges are:
for the storage cost [0.26, 0.42], for the compute cost [0.275,
0.375] and for latency [0.29, 0.37]. In this example we do have
a medium range of values whose solution is shared; in other
problem instances we may have a much smaller (or larger)
range. We want to emphasize that a short range is not
necessarily a bad option; if the user is confident about the
weight values then we give a correct and optimal solution.

However, in cases where these weights are a ballpark estimate
the graphs and numerical ranges shown should be useful.

We end this section with a discussion of the user-provided
data requirements. In many instances it is difficult to estimate
the output size of an application, or the number of application
runs (and their length). Similarly to our discussion of the
weights (alphas) we can re-run our solver varying different
input parameters; we continue using the same example. In this
case we have chosen the sizes of the first and second datasets.
We assign each dataset a range of possible sizes: for dataset
one from 10 to 30 GB and for dataset 2 from 1 to 4 GB; each
point in this 2D space represents a data allocation solution. We
have represented the data in Figure 5. We start with the original
solution in the bottom left corner of the graph and compare it to
each other solution. If they are the same we use a diamond
marker, otherwise we use a different marker. As it turns out in
this space there is only one other possibility; this other solution
becomes the optimal one as we increase the size of the second
datasets while the size of the first dataset remains under 15 GB.
This graph compares only storage allocation decisions;
compute (job scheduling) is not considered here.

In summary, the solution that our system finds for a
concrete data allocation problem is an optimal one, but we
recognize that the inputs to this problem may not be exact. In
order to avoid a garbage in, garbage out type of situation we

Figure 4. Volume that represents the alpha values for which the same
optimal solution exists. The starting values are 0.33 for all storage,

compute and latency alphas.

Figure 5. Solution space based on the sizes of datasets 1 and 2 for

example in section IV A. Each of the two marker types represents a
different data allocation solution.

0.3
0.32

0.34
0.36

0.38
0.4

0.42

0.25

0.3

0.35

0.4

0.45
0.25

0.3

0.35

0.4

0.45

Storage cost alphaCompute Cost alpha

L
a
te

n
c
y
 a

lp
h
a

1

1.5

2

2.5

3

3.5

4

10 15 20 25 30

S
iz

e
 o

f
D

a
ta

se
t

2
 i

n
 G

B

Size of Dataset 1 in GB

www.manaraa.com

re-run the solver with incrementally slight variations of the
input parameters and compare the outputs. In this section we
have explored a couple of data representations that can provide
the user with information on how stable the solution is. This
analysis is possible because of the fast solving stage; we can
analyze hundreds of data points and generate the graphs shown
in a few minutes.

V. USE CASES

In this section we present two possible use cases with two
scientific applications, BLAST and MODIS. In the first use
case (BLAST) we modify our formula to add a budget
constraint. Thus, a use can ask our system to give the best
solution given a budget of $250 per month (or any other
figure). In the second use case (MODIS) we show how we can
modify our formula beyond the cost (storage and compute),
latency, and bandwidth terms. Here we add computational
length as a term so the user can ask for the solution with the
shortest job completion time, given a set budget (and in
addition to the usual data requirements).

A. BLAST

The Basic Local Alignment Search Tools is a very popular
algorithm in bioinformatics which enables the search of genetic
sequences. We use the following parameters for the datasets
and the computation requirements: 20 GB input dataset
(approximately the size of the publicly available human
databases), 30 seconds query time, and 30 KB of output in
table format per query. We want to find out, with a limited
budget, what is the best solution for a set number of queries per
month. In order to do so we will modify the problem
formulation by moving the storage and compute costs from the
objective function (2) to a new linear constraint:

��

� ≥ �����

	���� + Y����Z
�	���� +W
X�
��	���� + ������
	���� (16)

The first three costs are defined in equations (4), (5) and (6)
and the Compute Cost term is equal to:

������
	���� = 	∑ ��������!��v ×	����w���vv (17)

We run different scenarios that are represented in TABLE
II. Each run of our prototype is given a budget and a number of
queries and returns the data allocation for both the input and
output datasets. We iteratively increment the number of queries
per month (5,000 more each step) till the system is not
solvable; each row of the table shows the scenario with the
maximum number of queries.

TABLE II. BLAST ON A BUDGET

Monthly

Budget
Input Dataset Output Dataset Number of Queries

$100
AWS S3 RRS, VA

Local NFS, VA
Local SQL, VA

60,000 (local)
15,000 (EC2, VA)

75,000 (total)

$250
AWS S3 RRS, VA

Local NFS, VA
Local SQL, VA

60,000 (local)
50,000 (EC2, VA)

110,000 (total)

$500
AWS S3 RRS, VA

Local NFS, VA
Local SQL, VA

60,000 (local)
110,000 (EC2, VA)

170,000 (total)

$1000
AWS S3 RRS, VA

Local NFS, VA
Local SQL, VA

60,000 (local)
225,000 (EC2, VA)

Monthly

Budget
Input Dataset Output Dataset Number of Queries

285,000 (total)

All the solutions share the same data allocations: the input
dataset is replicated in the local cluster (NFS) and in the
Amazon datacenter in Northern Virginia (S3 Reduced
Redundancy Storage); the output dataset is stored in a local
MySQL database. For query processing the local machine is
maxed out in every case at 60,000 queries per month;
additional compute power is allocated in Amazon. The
different budget levels give us the maximum number of
queries; this takes into account the cost of the data replication,
the transfer of output data for the computations carried out in
Amazon, and the cost of the EC2 machines. In this example we
consider a local machine to be equal in power to the Amazon
EC2 medium instance; in the next section we show how to take
into account the differences between instance types.

B. MODIS Cloud Bursting

Our next example uses the MODIS Azure scientific
application. This application processes satellite data from
several years to present analysis on certain processes, for
example evapotranspiration on the earth surface. A previous
paper [17] has presented the performance results of the
application running on Windows Azure, the local Windows
HPC cluster, and a combination of both. The combination of
local and cloud resources is labeled cloud bursting; the paper
present performance numbers for tasks that are allocated in the
cloud and need to find the input data (stored locally in blobs or
remotely in files). This paper concludes the evaluation section
with “We have found that in general the determining factor is
data –where it is and how much is moved. In many situations
the key to successful cloud bursting is to minimize data
movement”. Hence, we believe that this application can benefit
from our data allocation algorithms.

In this case we are not considering latency or bandwidth as
important metrics; we use average computation length (or
turnaround time) instead. Thus, our first step is appending the
following term in our general formula (1):

	�x ∗ �	
��

	��������!��	�
�
�ℎ =

Figure 6. Relationship between the average turnaround time of jobs processing
one year’s data and the monthly budget. We also show the percentage of local

computations: as the budget increases better machines are rented from the
Azure cloud and turnaround time improves.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

$1,000 $1,250 $1,500 $1,750 $2,000 $2,250

A
v

g
.

tu
rn

o
a

ro
u

n
d

 t
im

e
 i
n

 h
o

u
rs

%
 o

f
lo

ca
l

co
m

p
u

ta
ti

o
n

s

Monthly Budget

www.manaraa.com

	 %y
'(+.,-?8:/)	/D?) ∗ ∑ ,-?8:/)g,6∗.8))Bg,6∗,-?8:/)	<)=+/9g,6

#	-N	,-?8:/)	9-:*.	8)*	?-=/9 (18)

We changed the variable computek to computek,h; this
variable now means “number of monthly computations on sitek
using profilek,h”. We think of a profile as a different running
configuration; for example one profile could be 8 extra-large
workers on Azure, and another one 32 medium Azure workers.
The computation length is the time it takes to complete in the
standard local profile; the speedk,h modifiers come from
benchmarking. Given this modification, and the one presented
in the previous subsection, we can ask our system to give us the
best data and compute allocation that give us the fastest
turnaround time for jobs for a given budget.

The input parameters are the following ones: each year’s
data is separated into day files; on average each day has 2.96
GB of input data and its process generates 5.70 MB of output
after using 416 MB of temporary storage; we store the data for
years 2000 to 2010. Each computation access a complete year,
that is, 1/10th of each dataset and its length depends on the
machine being run on. The actual numbers used for these input
parameters are taken from the referenced paper. The solution
allocates the input and output data in both the Azure Blob (US
North Central datacenter) and the local HPC Cluster. The
computation is done by the local cluster nodes and medium
size nodes in Azure. Figure 6 presents two measurements
regarding the computation (at different budget levels): the
percentage of application runs done in the local cluster and the
average turnaround time for each application run (which
processes and reduces one year of satellite data). The lower the
budget the more computations we do locally and the slower
these computations are. Given this information about this
tradeoff (cost vs. speed) the user can make sound allocation
decisions based on her preferences or requirements.

VI. LIMITATIONS AND FUTURE WORK

As we have seen in the previous sections, our approach
relies on having accurate information on the capabilities of the
cloud providers. Currently there are multiple websites that
continuously benchmark cloud providers like Amazon or
Azure; we believe that the community will greatly benefit of
having a more thorough approach with more metrics and
making the data machine consumable (as opposed to web
graphs). Another limitation that is present for developed
applications is that interfaces are different across clouds; it is
difficult to modify an application to make it possible to run on
different clouds. The solution to this issue will probably come
by having cloud-agnostic APIs for data access (such as CSAL)
and by introducing more compatibility at the execution level:
running arbitrary apps for Platform as a Service providers
(Windows binaries on Azure), having compatible APIs
(Eucalyptus and Amazon) or other ports (Google App Engine
on Amazon EC2).

One final limitation is related to our allocation of
computation. In this paper we have introduced a planning
phase that gives us a data allocation solution and a coarse-
grained approach to computation: we do not take into account
factors such as the hourly billing of cloud providers, the VM
startup time and the shape of the computation (single-threaded,
workflow, etc.). We believe that all these factors are better

accounted for with an online approach. Thus, the next step in
our work is the data-aware Scheduler component (Figure 1).
We would like to explore dynamic algorithms that make the
actual scheduling decisions as the job request come. In addition
to this scheduling phase we would like to explore the
possibility of integrating our resource allocation solutions with
a distributed data system (for example, iRODS) so we can
automate our approach further.

VII. CONCLUSION

In this paper we have presented our approach to data
allocation in cloud computing. Building upon our previous
work, where we match each application dataset with a set of
possible storage services based on storage capabilities and data
requirements, we first generate an integer linear programming
problem that takes into account storage and compute costs,
latency, and bandwidth. This ILP problem model takes into
account the unique characteristics of cloud computing. Our
software implementation uses an ILP solver to find an optimal
data allocation solution in one second or less; we have also
shown that our approach is scalable as the number of cloud
providers, datacenters or storage services increase. These short
running times also allow us to gather more information about
the sensitivity of this solution and present it to the user. Finally
we have presented two use cases with the BLAST and MODIS
applications. Small changes in our problem formulation allows
us to add a monthly budget restriction and to minimize job
turnaround time in our optimal solutions; combining local and
cloud resources we can halve the cost compared to a cloud-
only approach or increase job turnaround time by 52%
compared to a local-only approach..

VIII. REFERENCES

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing.” 2009.

[2] A. Ruiz-Alvarez and M. Humphrey, “An Automated Approach to
Cloud Storage Service Selection,” in 2nd Workshop on Scientific

Cloud Computing (ScienceCloud 2011), 2011.
[3] M. Berkelaar, K. Eikland, and P. Notebaert, “lpsolve: Open source

(mixed-integer) linear programming system,” 2011. [Online].
Available: http://lpsolve.sourceforge.net/.

[4] W. W. Chu, “Optimal File Allocation in a Multiple Computer
System,” IEEE Transactions on Computers, vol. 18, no. 10, pp. 885-
889, Oct. 1969.

[5] R. G. Casey, “Allocation of copies of a file in an information
network,” in In Proceedings of the AFIPS Joint Computer

Conferences, 1972, pp. 617-625.
[6] E. Grapa and G. G. Belford, “Some theorems to aid in solving the

file allocation problem,” Communications of the ACM, vol. 20, no.
11, p. 878, 1977.

[7] K. Lam and C. T. Yu, “An approximation algorithm for a file-
allocation problem in a hierarchical distributed system,” in In

Proceedings of the 1980 ACM SIGMOD International Conference

on Management of Data, 1980, pp. 125 - 132.
[8] S. Mahmoud and J. S. Riordon, “Optimal allocation of resources in

distributed information networks,” ACM Transactions on Database

Systems (TODS), vol. 1, no. 1, p. 66, 1976.
[9] L. W. Dowdy and D. V. Foster, “Comparative Models of the File

Assignment Problem,” ACM Computing Surveys (CSUR), vol. 14,
no. 2, p. 287, 1982.

[10] B. Gavish and O. R. L. Sheng, “Dynamic file migration in
distributed computer systems,” Communications of the ACM, vol.
33, no. 2, p. 177, 1990.

www.manaraa.com

[11] B. Awerbuch, Y. Bartal, and A. Fiat, “Competitive distributed file
allocation,” in Annual ACM Symposium on Theory of Computing,
1993, pp. 164-173.

[12] H. L. Morgan and K. D. Levin, “Optimal program and data locations
in computer networks,” Communications of the ACM, vol. 20, no. 5,
p. 315, 1977.

[13] Lintao Zhang and Sharad Malik, “The Quest for Efficient Boolean
Satisfiability Solvers ,” Computer Aided Verification, vol. 2404, pp.
641-653, Sep. 2002.

[14] Microsoft, “Microsoft Solver Foundation.” [Online]. Available:
http://msdn.microsoft.com/en-us/devlabs/hh145003.aspx.

[15] Z. Hill, M. Mao, J. Li, A. Ruiz-Alvarez, and M. Humphrey, “Early
Observations on the Performance of Windows Azure.,” in 1st

Workshop on Scientific Cloud Computing (ScienceCloud 2010),
2010.

[16] A. Ruiz-Alvarez and M. Humphrey, “ILP problem formulation and
solutions,” 2011. [Online]. Available:
http://www.cs.virginia.edu/~ar5je/ILP.html.

[17] M. Humphrey, Z. Hill, K. Jackson, C. van Ingen, and Y. Ryu,
“Assessing the Value of Cloudbursting: A Case Study of Satellite
Image Processing on Windows Azure,” in 7th IEEE International

Conference on e-Science (escience 2011), 2011.

